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Abstract

The energy stability problem with respect to axisymmetric disturbances of the natural convection in the narrow gap

between two spherical shells under the earth gravity is discussed. The results are compared with the results of the linear

stability analysis for the same problem. The problem is solved for different fluids with Pr ¼ 0–100 and different radius
ratios g ¼ 0:9; 0:925; 0:95. With the aid of the variational principle Euler–Lagrange equations are received, which have
the form of an eigenvalue problem, that is solved by means of Galerkin–Chebyshev spectral method. The convergence

problem and the dependence of the critical stability parameter on Prandtl number are discussed. The calculations show

that there is a big difference between critical numbers for energy and linear stability theories for the small Prandtl

numbers. For large Prandtl numbers this difference is very small. � 2002 Published by Elsevier Science Ltd.
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1. Introduction

In this article, the results of the energy stability

theory of natural convection between spherical shells

for Boussinesq fluids under the condition of earth grav-

ity are presented. The two concentric spherical shells

are maintained at constant, different temperatures. The

inner sphere is warmer and maintained at a constant

temperature T1 while the outer sphere is at a constant
temperature T2. The gravity field acts antiparallel to the
vertical axis. The geometry of system is presented in

Fig. 1.

Stability analysis in the spherical geometry has been

performed for different flows and boundary conditions.

In [1,2] the flow between two rotating spheres was in-

vestigated with linear and energy stability theories, in

[3,4] the spherical Rayleigh–B�eenard problem was solved,

in [5] the energy stability of Rayleigh–B�eenard convection
was investigated and in [6,7] the stability of the flow in

the spherical gap for different gravity models.

The important experimental results for this kind of

geometry were received in [8,9] for different g. The
change of the flow as function of g and Rayleigh number
for air and water [8] and silicone oil ðPr ¼ 100Þ [9] was
investigated. Detailed discussions of these results can be

found in [10,12,13].

When the temperatures of two spheres are equal,

there is no base flow. When the temperatures of two

surfaces are different, buoyancy forces induce motion

in the fluid between the spheres. The physics of the

problem is more complicated than the usual Rayleigh–

B�eenard problem, because the gravity and temperature
gradient are not always parallel and therefore the sta-

bility analysis is more difficult. The base flow depends on

the geometry parameter g ¼ R1=R2, the Prandtl number
Pr ¼ m=k and the Rayleigh number Ra ¼ ðgaDTDR3Þ=km.
For narrow gaps 0:96 g < 1, for which we investigate
the stability problem, this flow was analytically calcu-

lated by Wright and Douglas [11] and is discussed

in Section 2. To investigate the stability of any flow,

for example, two theories are used: linear and energy
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stability theories. Both describe different aspects of the

stability of the flow, therefore linear stability analysis as

well as energy stability analysis are important for a de-

tailed investigation of the flow stability. If the parameter

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gaDTDR3=m2

p
is larger than a critical value for a

given Prandtl number and radius ratio, the flow is un-

stable. The linear theory gives this critical number and

predicts the instability. We note this value RcL. How-

ever, for R < RcL, linear stability analysis is not enough

to predict the behaviour of the system. To investigate the

system for R < RcL, the energy stability analysis is used

to determine the critical value RcE. If the stability pa-

rameter R is smaller than RcE, the flow is definitely

stable. Necessarily, RcE6RcL. The stability problem for

this flow in the frame of linear theory was investigated

by Farmer et al. [10] and Gardner [12]. Because Farmer

assumed that the principle of exchange of stability is

valid for all Prandtl numbers and received results, which

distinguish from Gardner’s results, who solved the ei-

genvalue problem without this assumption. Indeed this

principle exists only for some Prandtl numbers.

2. The base flow

To investigate the stability of the flow, the expression

for the base flow must be received. The governing

Nomenclature

~eer;~ee# unit vectors in radial and latitudinal direc-

tions

~eez cos#~eer � sin#~eeh

ĤH disturbance temperature field

g gravitational acceleration constant

g‘ðrÞ; f‘ðrÞ partial spectral
h‘ðrÞ functions

Gr Grashof number, gaDTDR3=m2

Pr Prandtl number, m=k
r radial coordinate

z radial coordinate, r ¼ 1
2
½zþ 1þg

1�g�
P0; p̂p base flow, disturbance pressure

P disturbed flow pressure

V disturbed flow velocity

T disturbed flow temperature

t time

R stability parameter,
ffiffiffiffiffiffi
Gr

p

Ra Rayleigh number, gaDTDR3=km
R1;R2 inner, outer radius of the spheres

DR R2 � R1
Tn Chebyshev polynomial of order n

Pn Legendre polynomial of the first kind of

degree n

Np spherical harmonics truncation order

Nc Chebyshev truncation order

RcL critical parameter of the linear stability

theory

RcE critical parameter of the energy

T0 base flow temperature field

T1; T2 inner, outer surface temperature

DT T1 � T2
v̂vr; v̂v#; v̂vu radial, latitudinal, longitudinal disturbance

velocity

V0r; V0h radial, latitudinal base flow velocity

Greek symbols

g radius ratio R1=R2
� 1� g, relative gap width
m kinematic viscosity

# latitudinal coordinate

x cos#
u longitudinal coordinate

r eigenvalue from linear theory

Refrg real part of r
Imfrg imaginary part of r
w base flow stream function

k thermal diffusivity

ÛU; ŴW poloidal and toroidal scalar functions

k Lagrange parameter

C;D; T1;N;X functions describing the base flow

a coefficient of volume expansion

Rk; } Lagrange coefficients

k energy parameter

Fig. 1. Spherical geometry.
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equations [12] consist of the continuity equation, Navier–

Stokes equation and the thermal energy equation with

boundary conditions. Now we will non-dimensionalize

all these equations due to following set of scales:

Length DR ¼ R2 � R1;

Temperature DT ¼ T2 � T1;

Velocity V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gaDTDR

p
;

Time scale t ¼ L=V ;

Pressure scale P ¼ qV 2:

Introducing this dimensionless variables the governing

equation and boundary conditions are:

o~VV0
ot

þ ð~VV0rÞ~VV0 ¼ �rP0 þ T0~eez þ
1

R
D~VV0; ð1Þ

oT0
ot

þ ð~VV0rÞT0 ¼
1

PrR
DT0; ð2Þ

r~VV0 ¼ 0; ð3Þ

T0ðg=�; #;uÞ ¼ 1;
T0ð1=�; #;uÞ ¼ 0;
~VV0ðg=�; #;uÞ ¼ ~VV0ð1=�; #;uÞ ¼ 0:

ð4Þ

The problem expressed by this equations has an ap-

proximate, steady, axisymmetric base flow solution for

small values of � [11]. This solution can be expressed in
the following form:

wðr; xÞ ¼ ð1� x2Þ½Cðr;R; Pr; �Þ þ xDðr;R; Pr; �Þ�; ð5Þ

T0ðr; xÞ ¼ T1ðr; Pr; �Þ þ x½Nðr;R; Pr; �Þ
þ xXðr;R; Pr; �Þ�; ð6Þ

where wðr; xÞ is the stream function, T0 is the tempera-

ture function, x ¼ cos#, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gaDT ðDRÞ3=m2

q
and the

functions T1, C, D, N and X are given in [12].

This solution is valid for the radius ratios 0:96 g < 1
and for values of R in the range 06R <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
720=�Pr

p
.

The components of the velocity vector of the base

flow is obtained from the stream function w by the re-
lations:

V0r ¼ � 1
r2

ow
ox

; V0# ¼ � 1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ow
or

; V0u ¼ 0: ð7Þ

3. Formulation of the problem

3.1. Linear stability analysis

Let ð~̂vv̂vvðr; x;u; tÞ; ĤHðr; x;u; tÞ; p̂pðr; x;u; tÞÞ be a small
disturbance of the base flow. If we substitute the sum

of the base flow and the disturbance flow

~VV ¼ ~VV0 þ~̂vv̂vv;

T ¼ T0 þ ĤH;

P ¼ P0 þ p̂p

in the governing equations (1)–(3) and use that ð~VV0;
T0; P0Þ is a solution of them, we obtain the system of

equations for the perturbations:

o~̂vv̂vv
ot

þ ð~̂vv̂vvrÞ~VV0 þ ð~VV0rÞ~̂vv̂vvþ ð~̂vv̂vvrÞ~̂vv̂vv

¼ �rp̂p þ ĤH~eez þ
1

R
D~̂vv̂vv; ð8Þ

oĤH
ot

þ~̂vv̂vvrT0 þ ~VV0rĤH þ~̂vv̂vvrĤH ¼ 1

RPr
DĤH; ð9Þ

r~̂vv̂vv ¼ 0 ð10Þ

with boundary conditions

ĤHðg=�; #;uÞ ¼ ĤHð1=�; #;uÞ ¼ 0;
v̂vðg=�; #;uÞ ¼ v̂vð1=�; #;uÞ ¼ 0:

ð11Þ

We seek the solution of the problem in the following

form:

~̂vv̂vvðr; x;u; tÞ ¼ ~̂vv̂vv0ðr; x;uÞert;

ĤHðr; x;u; tÞ ¼ ĤH0ðr; x;uÞert;

p̂pðr; x;u; tÞ ¼ p̂p0ðr; x;uÞert:

After the substitution of this expressions in (8)–(10) and

neglecting the nonlinear terms we receive the linear

stability equations which form a eigenvalue problem for

r. To calculate the critical stability parameter for the
linear theory RcL we have to calculate the eigenvalue

with ReðrÞ ¼ 0. The imaginary part of the eigenvalue is
important, too. If the imaginary part is zero the Prin-

ciple of Exchange of Stabilities is valid and the bi-

furcation is steady, otherwise we have a time-periodic

bifurcation. Only numerical research and the solution of

the eigenvalue problem can answer the question about

kind of bifurcation. The details about linear stability

analysis can be found in [12,13] and in the results of this

article.

3.2. Energy stability analysis

The main contribution in the energy stability theory

for hydrodynamic problems was made by Serrin [14] and

Joseph [15].

In the global stability theory energy methods play an

important role, because they define a criterion, which is

sufficient for the global stability of the basic flow.

To formulate Euler–Lagrange equations we use Eqs.

(8)–(10) with boundary conditions and the method of

calculus of variations.
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Introducing an energy

Ek ¼ Ekin: þ kEtherm:; ð12Þ

where

Ekin: ¼
1

2

Z
v̂v2 dV ; Etherm: ¼

1

2
Pr
Z

ĤH2 dV ð13Þ

with positive k and the notations

I1 ¼
Z

½~̂vv̂vvD~̂vv̂vv� ĤHð~̂vv̂vv~eezÞ�dV ; I2 ¼
Z

½ĤH~̂vv̂vvrT0�dV ;

D1 ¼
Z

½rv̂v : rv̂v�dV ; D2 ¼
Z

ðrĤHÞ2 dV ;

Ik ¼ I1 þ kPrI2; Dk ¼ D1 þ kD2; ð14Þ

where

Dij ¼
1

2

oV0i
oxj

�
þ oV0j

oxi

�
; ð15Þ

we can write

1

Dk

dEk

dt
¼ � 1

R
� Ik
Dk

6 � 1

R
þ 1

qk

; ð16Þ

where

q�1
k ¼ max

H

�
� Ik
Dk

�
: ð17Þ

Here H is the collection of smooth functions satisfying

r~̂vv̂vv ¼ 0 and boundary conditions (11).
Joseph has shown that [5]

EkðtÞ6Ekð0Þ exp
�
� n2

1

R

�
� 1

qk

�
t
�
: ð18Þ

Stability is guaranteed if R < qk. This leads to the idea

to formulate the maximum problem for the number

1=qk. The calculation of the maximum of this number is

equivalent to the calculation of the maximum of the

expression

� Ik
Dk

¼ �I1ð~̂vv̂vv; ĤHÞ � kPrI2ð~̂vv̂vv; ĤHÞ
D1ð~̂vv̂vv;~̂vv̂vvÞ þ kD2ðĤH; ĤHÞ

: ð19Þ

For following calculations the maximum problem is

formulated in the frames of variational calculus. The

functional is defined on solenoidal vector fields. We have

the variational problem (17) with boundary conditions

(11), continuity equation (10) and normalizing condi-

tion

D1ð~̂vv̂vv;~̂vv̂vvÞ þ kD2ðĤH; ĤHÞ ¼ 1: ð20Þ

Writing the variational principle in the form

dJ ¼ 0; ð21Þ

where

J ¼ I1 þ kPrI2 �
2

Rk

Z
}r~̂vv̂vvdV þ 1

Rk
ðD1 þ kD2Þ; ð22Þ

and }ðz; x;uÞ and Rk are Lagrange coefficients resulting

from the normalization condition (20) and the condition

r~̂vv̂vv ¼ 0, we can write the Euler–Lagrange equations,
corresponding to (22),

RkðD~̂vv̂vvÞ þ
1

2
RkPrkðrT0ĤHÞ � 1

2
Rk~eezĤH ¼ �r}þ D~̂vv̂vv;

ð23Þ

1

2
RkPrð~̂vv̂vvrT0Þ �

1

2

Rk

k
~̂vv̂vv~eez ¼ DĤH ð24Þ

with boundary conditions (11).

Here

~eez ¼ cos#~eer � sin#~ee#: ð25Þ

The base flow is axisymmetric and therefore the matrix

Dij has the form

Dij ¼
D11 D12 0
D21 D22 0
0 0 D33

0
@

1
A:

From Eqs. (23) and (24) the following expression for

q�1
k can be written:

maxð�IkÞ ¼ max
1

Rk

� �
¼ 1

qk

or

qk ¼ minðRkÞ: ð26Þ

For the critical eigenvalue from the energy theory we

have the following expression:

RcE ¼ max
k
minRk: ð27Þ

The k number maximizing qk we call kbest. This number
can be calculated using [5]

kbest ¼
R
V
~̂vv̂vv~eezHdV

Pr
R
V ð~̂vv̂vvrT0ÞHdV

: ð28Þ

Eqs. (23) and (24) with boundary conditions (11) must

be solved.

4. Solution of the problem

4.1. Equations for energy stability analysis

Since according to the continuity equation div~̂vv̂vv ¼ 0,
~vv is a solenoidal vector, it is possible to express the dis-
turbance velocity as a sum of two velocities which de-

pends from two scalar potentials

~̂vv̂vv ¼ ~̂vv̂vv1 þ~̂vv̂vv2; ð29Þ
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where

~̂vv̂vv1 ¼ rotrotðÛU~rrÞ; ~̂vv̂vv2 ¼ rotðŴW~rrÞ: ð30Þ

The scalar functions ÛUðr; x;uÞ and ŴWðr; x;uÞ are the
poloidal and toroidal potentials. Our goal is to express

the equations for disturbance flow with the boundary

conditions in terms of these potentials.

For the velocity components we have following ex-

pressions:

v̂vr ¼ � 1
r
r2

s ÛU; ð31Þ

v̂v# ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p oŴW
ou

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

r
o

or
r
oÛU
ox

 !
; ð32Þ

v̂vu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p oŴW
ox

þ 1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p o

or
r
oÛU
ou

 !
; ð33Þ

where

r2
s ð�Þ ¼

o

ox
ð1
�

� x2Þ oð�Þ
ox

�
þ 1

1� x2
o2ð�Þ
ou2

: ð34Þ

The system (23) and (24) can now be solved using the

method of normal modes and orthogonality properties

of toroidal and poloidal fields.

Let Aðr; x;uÞ represent an arbitrary function, that
can be expanded as

Aðr; x;uÞ ¼
X1
‘¼0

X‘
m¼�‘

a‘mðrÞY m
‘ ðx;uÞ; ð35Þ

where the functions

Y m
‘ ðx;uÞ ¼

2‘þ 1
4p

ð‘� mÞ
ð‘þ mÞ

� �1=2
Pm
‘ ðxÞeimu ð36Þ

are the spherical harmonics. They have the following

orthogonality property:Z 1

�1

Z 2p

0

�YY m
‘ ðx;uÞY n

k ðx;uÞdudx ¼ d‘kdmn: ð37Þ

We write the series for ÛU, ŴW and ĤH as

ÛUðr; x;uÞ ¼
XNp
‘¼1

X‘
m¼�‘

g‘mðrÞPm
‘ ðxÞeimu; ð38Þ

ŴWðr; x;uÞ ¼
XNp
‘¼1

X‘
m¼�‘

f‘mðrÞPm
‘ ðxÞeimu; ð39Þ

ĤHðr; x;uÞ ¼
XNp�1
‘¼0

X‘
m¼�‘

h‘mðrÞPm
‘ ðxÞeimu; ð40Þ

where the infinite sum has been truncated to Np terms

and the unknown set of functions g‘mðrÞ, f‘mðrÞ and
h‘mðrÞ. Pm

‘ are the associated Legendre functions.

To receive the equations of the functions ÛU, ŴW and ĤH
we use the properties of poloidal and toroidal fields.

To eliminate r}, the operator curl is applied to both
parts of Eq. (23). Now we can rewrite this equation as

follows:

�curl3~̂vv̂vv ¼ �curlð~rrr4ÛUÞ þ curl2ð~rrr2ŴWÞ

¼ curl RkðD~̂vv̂vvÞ
�

þ 1
2

RkPrkðrT0ĤHÞ � 1
2

Rk~eezĤH
�
ð41Þ

Now we will introduce new poloidal and toroidal fields:

Sr ¼ � 1
r2
r2

s Y
m
‘ ð#;uÞ; S# ¼ 0; Su ¼ 0; ð42Þ

Tr ¼ 0; T# ¼ 1

sin h
oY m

‘ ð#;uÞ
ou

;

Tu ¼ � oY m
‘ ð#;uÞ
o#

: ð43Þ

To receive the equations for function ÛU we have to

calculate the scalar product of the expressions (41) and

(43); for function ŴW we calculate the scalar product of

(41) and (42). The system of the differential equations

for ÛU, ŴW and ĤH can be written in the form of an ei-

genvalue problem

Ax ¼ RkBx; ð44Þ

here

A ¼
r4r2

s 0 0
0 r2r2

s 0
0 0 r2

0
@

1
A;

where

x ¼
ÛU
ŴW
ĤH

0
@

1
A

is the eigenvector and Rk the eigenvalue of the energy

stability problem. The matrix B is much more compli-
cated and the coefficients Bij can be obtained after a lot

of calculations.

If we substitute the expressions (38)–(40) in this

equations and use the orthogonality properties of

Legendre polynomials we receive a finite set of ordinary

differential equations for the functions g‘m, f‘m and h‘m.
These equations are available, on request, from the au-

thors.

Before we apply the Galerkin–Chebyshev spectral

method, we have to map the radial coordinate from

domain ½g=�; 1=�� onto a domain ½�1; 1�, where the
Chebyshev polynomials are defined, using the following

expression:

r ¼ 1
2

z
�

þ 1þ g
1� g

�
: ð45Þ
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Now the functions g‘m and h‘m (we consider the energy
stability problem with respect to axialsymmetric distur-

bances) can be expanded in a truncated series of

Chebyshev polynomials. For example,

gðIVÞ‘m ðzÞ ¼
XNc
k¼0

a‘kmTkðzÞ; ð46Þ

hðIIÞ‘m ðzÞ ¼
XNc
k¼0

b‘kmTkðzÞ; ð47Þ

where TkðzÞ are Chebyshev polynomial TkðzÞ ¼
cos½k arccosðzÞ� with following orthogonality properties:Z 1

�1

TmðzÞTnðzÞffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p dz ¼ cnpdmn=2; ð48Þ

c0 ¼ 2; cn ¼ 1 nP 1:

For other derivatives we have the following expressions:

gðbÞ‘m ðzÞ ¼
XNcþ4�b

j¼0

XNc
k¼0

gðbÞjk a‘kmTjðzÞ ð49Þ

for b ¼ 0; 1; 2; 3,

hðbÞ‘m ðzÞ ¼
XNcþ2�b

j¼0

XNc
k¼0

hðbÞjk b‘kmTjðzÞ ð50Þ

for b ¼ 0; 1; 2.
The coefficients gðbÞjk ; h

ðbÞ
jk are presented in [16].

Substituting this series in (44) we receive the eigen-

value problem for coefficients a‘km and b‘km.
The elements of matrices A and B depend on the

physical and geometrical parameters of the problem �,
Pr and R and the numerical parameters Nc and Np

(sufficiently high values of Nc and Np are required for

convergence). The eigenvalues were computed using the

commercial NAG routines.

4.2. Algorithm of solution

To receive the critical stability parameter for energy

theory we have to calculate

RcE ¼ max
k
minRk:

This critical parameter produce a surface of stability of

the form

RcE ¼ RcEðg; Pr;Nc;NpÞ:

The solution procedure to find RcE is represented in the

following algorithm:

1. Fix the geometry of the system g ð0:96 g < 1Þ.
2. Select a value of the Prandtl number, Pr, fixing the

fluid to be used.

3. Select a value of R.

4. Fix k.
5. Compute the elements of matrices A and B.

6. Calculate eigenvalues and find smallest positive ei-

genvalue Rk.

7. If Rk ¼ R then go to step 8.

If Rk < R then decrement R, if Rk > R then incre-

ment R (step 3).

8. The steps 4–7 must be done for different k. We re-
ceive the function RkðkÞ. And we find maxk>0 Rk.

We denote k, that gives maximum for this function,
as k0.

9. Calculate eigenvector for k0 and disturbance velocity
and temperature fields, substitute in the expression

(28) and calculate knew.
If knew 6¼ k0, then repeat steps 4–7 for knew. If knew ¼
k0, then RcE is calculated.

10. Repeat steps 3–8 for different combinations of g and
Pr.

11. The convergence analysis must be performed.

Fig. 2. Convergence curve for g ¼ 0:9 and Pr ¼ 0:7.

Table 1

Convergence analysis

Pr g ¼ 0:9 g ¼ 0:925 g ¼ 0:95
Energy Theory Linear Theory Energy Theory Linear Theory Energy Theory Linear Theory

Nc Np Nc Np Nc Np Nc Np Nc Np Nc Np

0.26–0.29 12 60 12 55 12 90 12 60 �90 �60
0.3 12 55 12 50 12 55 12 55 �55 �55
0.7–100 8 45 8 45 8 55 8 50 8 75 8 75
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5. Convergence analysis

The solution of the problem depends not only on

parameters g, Pr and R, but also on numerical Cheby-

shev and Legendre truncation orders Nc and Np. Nc

controls the number of Chebyshev polynomials used in

the radial direction of the disturbances and Np the

number of Legendre polynomials used in the latitudinal

variation of the disturbances.

For any radius ratio and Prandtl number the con-

vergence has to be checked, because the calculations

show that the convergence depends essentially on this

truncation orders. In Table 1 the numbers Nc and Np

necessary for the convergence are presented.

The convergence analysis is compared for both sta-

bility theories linear and energy.

In Fig. 2 the convergence analysis for g ¼ 0:9 and
Pr ¼ 0:7 for linear theory is shown. The dependence of
the necessary truncation orders on the radius ratio is

summarized in Table 1.

From the convergence analysis we can draw the fol-

lowing conclusions:

1. To receive convergence we need the same Chebyshev

polynomials number for both theories.

2. But we need more Legendre polynomials to receive

the convergence for the energy stability theory than

for linear theory.

3. The narrower gap, the more Legendre polynomials

must be considered. For small Prandtl numbers a

very large number of Legendre polynomials are

needed.

4. The stability curves are similar for both stability the-

ories.

6. Results and discussions

Stability investigations have been done for g ¼ 0:9,
g ¼ 0:925 and g ¼ 0:95. The Prandtl number was varied
from 0 to 100 to compare the results with [12]. The re-

sults are presented in the form of a table and diagrams

where the critical stability parameter R ¼
ffiffiffiffiffiffi
Gr

p
for

energy and linear stability analysis are compared.

Although we have calculated the stability problem

with respect to axisymmetric disturbances for all Prandtl

numbers Pr ¼ 0–100 very detailed, the three dimensional
analysis for the linear and energy stability theories shows

that m ¼ 0 is the critical mode for Pr ¼ 0:1 and Pr ¼ 0:7
for g ¼ 0:9 and g ¼ 0:925 (Table 4). Here we have dif-
ferences between our results and Gardner’s results [12]:

for Pr ¼ 0:7 he found a critical mode with wave number
m ¼ 2. Generally, the critical numbers in [12] are higher
then in our paper. The difference increases from 0.2% for

small Prandtl numbers to 7.5% for large Prandtl num-

bers. The reason for this difference is not clear, but for

narrow gap our results are very close to Ra ¼ 1708 from
the analytical results for the plane Rayleigh–B�eenard
stability problem. For example for g ¼ 0:95, Pr ¼ 0:7 we
get RacL ¼ 1699:96 and in [12] RacL ¼ 1771.
The kind of the bifurcation depends on the Prandtl

number [12,13]. If the imaginary part of the eigenvalue is

zero ðImðrÞ ¼ 0Þ, then we deal with a steady bifurcation
and the Principle of Exchange of Stabilities is valid. If

a imaginary part of the eigenvalue is not zero, then

we deal with a time-periodic bifurcation or the Hopf

bifurcation of the basic flow. The boundary Prandtl

number between this kinds of bifurcation is defined as

transition Prandtl number, Prt.
In the frames of the linear theory we have calculated

the transition Prandtl number as in [12] for g ¼ 0:9 and
g ¼ 0:925, too. For g ¼ 0:95 it is unfortunately very com-
plicated because we need much more Legendre poly-

nomials for that. The stability curve near the transition

Table 2

Critical eigenvalues for Prandtl numbers near Prt

Pr g ¼ 0:9 Pr g ¼ 0:925
r r

0.25 9:7013� 10�5 þ i11:6439 0.25 8:1503� 10�4 þ i8:6067
0.26 2:4114� 10�4 þ i11:6098 0.26 �6:0123� 10�4 þ i8:5972
0.27 1:7510� 10�5 þ i11:5858 0.27 5:8920� 10�4 þ i8:5911
0.28 5:4239� 10�5 þ i11:5772 0.28 �5:2291� 10�4 þ i0:0
0.29 �8:2666� 10�4 þ i0:0 0.29 �1:4118� 10�4 þ i0:0
0.30 6:080214� 10�4 þ i0:0 0.30 3:3564� 10�4 þ i0:0
0.31 5:9650� 10�4 þ i0:0 0.31 6:5983� 10�6 þ i0:0

Fig. 3. Stability curve near Prt.
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Prandtl number is presented in Fig. 3. Together with

results for linear stability theory the results for energy

stability theory for small Prandtl numbers are shown.

In Table 2 the dependence of the kind of bifurcation

(Hopf or steady) on the Prandtl number can be ob-

served. The real part is not exactly zero but numerically.

All the critical eigenvalues from linear stability theory

have real parts of order 10�4–10�6.

As Fig. 3 and the results in Table 2 show the de-

pendence of the critical parameter on the Prandtl num-

ber is not linear at those points where the imaginary part

of the eigenvalue is zero. The results of linear and energy

theories for other Prandtl numbers are summarized in

Figs. 4, 5 and Table 3.

In Figs. 3–5 the dependence of the critical value for

both stability theories on the Prandtl number can be

compared. In case of small Prandtl numbers a big region

exists, which is open to subcritical instabilities. For big

Prandtl numbers this region is smaller.

The calculations show that there is a big difference

between critical numbers for energy and linear theories

for small Prandtl numbers (the difference is 14% for

Pr ¼ 0:28). For large Prandtl numbers this difference
decreases (2% for Pr ¼ 100). This difference is less for

Fig. 4. Stability curve for large Pr and g ¼ 0:9. Fig. 5. Stability curve for large Pr and g ¼ 0:925.

Table 3

Critical numbers R for linear and energy stability theories

Pr g ¼ 0:9 g ¼ 0:925 g ¼ 0:95
kbest RcE RcL kbest RcE RcL kbest RcE RcL

0.0 108.92 104.834

0.1 8.83 71.47 94.606 8.79 71.28 91.728

0.2 4.74 67.55 87.24 4.73 67.40 87.028

0.25 3.89 65.54 84.517 3.89 65.42 84.643

0.26 3.76 65.13 84.103 3.75 65.0 84.3

0.27 3.63 64.72 83.732 3.63 64.62 84.005

0.28 3.52 64.32 83.403 3.51 64.22 81.843

0.29 3.40 63.91 81.167 3.40 63.82 79.683

0.3 3.30 63.49 78.94 3.30 63.42 77.795

0.31 3.20 63.08 76.935 3.20 63.02 76.046

0.4 2.49 59.31 65.022 2.52 59.417 65.31

0.5 1.91 54.97 57.445 2.0 55.43 58.002

0.7 1.2792 46.8766 48.197 1.3391 47.7914 48.814 1.3932 48.5650 49.28

1.0 0.8873 39.2752 40.196 0.9296 40.0624 40.767 0.9663 40.7395 41.20

6.0 0.1462 16.0417 16.36 0.1537 16.3708 16.613 0.1602 16.6578 16.807

10.0 0.0877 12.4255 12.672 0.0922 12.6808 12.865 0.096 12.9038 13.02

15.0 0.0584 10.1452 10.345 0.0614 10.3538 10.507 0.064 10.5361 10.63

20.0 0.0438 8.7859 8.96 0.046 8.9666 9.097 0.048 9.1246 9.206

30.0 0.0292 7.1736 7.315 0.03 7.3208 7.43 0.032 7.4503 7.52

40.0 0.0219 6.2125 6.33 0.023 6.3404 6.43 0.024 6.4522 6.51

50.0 0.0175 5.5566 5.665 0.0184 5.6709 5.75 0.0192 5.7710 5.82

60.0 0.01459 5.0724 5.17 0.0153 5.1769 5.25 0.016 5.2682 5.31

70.0 0.01251 4.6961 4.79 0.01316 4.7928 4.86 0.0137 4.8774 4.92

80.0 0.0109 4.3928 4.48 0.0115 4.4833 4.546 0.012 4.5624 4.60

90.0 0.00973 4.1416 4.23 0.01 4.2266 4.28 0.0106 4.3015 4.34

100.0 0.0087 3.92904 4.0 0.0092 4.01 4.06 0.0096 4.0807 4.12
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narrow shells. The best k number decreases with in-
creasing of Pr and �. For narrow gaps the critical Ray-
leigh numbers are very close to 1708. The dependence of

the critical value on Prandtl number for energy stability

theory is linear for small Prandtl numbers and is not

linear for large Prandtl numbers.

7. Conclusions

The goal of this research was the calculation of the

lower stability limit for the natural convection between

spherical shells with energy stability method and com-

parison of these results with linear stability theory. The

calculations were made for large range Prandtl number

and for different radius ratios. This investigation was

made for narrow gaps.

The investigation shows that the difference between

the linear and energy stability analyses is larger for small

Prandtl numbers than for large Prandtl numbers.

In the future research the stability results should be

extended to the range of smaller radius ratios and

compared with experimental results.
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